Popular Posts

Wednesday, 8 November 2023

FOLATE DEFICIENCY


INTRODUCTION

BACKGROUND

The prevalence of folic acid deficiency has decreased since the United States and Canada introduced a mandatory folic acid food fortification program in November 1998. People with excessive alcohol intake and malnutrition are still at high risk of folic acid deficiency.

Figure 4.

Histologically, the megaloblastosis caused by folic acid deficiency cannot be differentiated from that observed with vitamin B-12 deficiency.

The significance of folic acid deficiency is compounded further by the following attributes:

An association of folate deficiency with elevated homocysteine, leading to increased arteriosclerosis risksThe reduced incidence of neural tube defects with folate supplementationThe role of folate in the occurrence of cancer

Hence, folic acid clearly is of consequence in public health in the United States, especially because heart disease and cancer constitute the number 1 and number 2 causes of mortality in the United States. This article explores the mechanisms and manifestations behind folate deficiency, as well as its ramifications with regard to health and disease at large.

PATHOPHYSIOLOGY

Folic acid is composed of a pterin ring connected to p-aminobenzoic acid (PABA) and conjugated with one or more glutamate residues. It is distributed widely in green leafy vegetables, citrus fruits, and animal products. Humans do not generate folate endogenously because they cannot synthesize PABA, nor can they conjugate the first glutamate.

Folates are present in natural foods and tissues as polyglutamates because these forms serve to keep the folates within cells. In plasma and urine, they are found as monoglutamates because this is the only form that can be transported across membranes. Enzymes in the lumen of the small intestine convert the polyglutamate form to the monoglutamate form of the folate, which is absorbed in the proximal jejunum via both active and passive transport.

Within the plasma, folate is present, mostly in the 5-methyltetrahydrofolate (5-methyl THFA) form, and is loosely associated with plasma albumin in circulation. The 5-methyl THFA enters the cell via a diverse range of folate transporters with differing affinities and mechanisms (ie, adenosine triphosphate [ATP]–dependent H+ cotransporter or anion exchanger). Once inside, 5-methyl THFA may be demethylated to THFA, the active form participating in folate-dependent enzymatic reactions. Cobalamin (B-12) is required in this conversion, and in its absence, folate is "trapped" as 5-methyl THFA.

From then on, folate no longer is able to participate in its metabolic pathways, and megaloblastic anemia results. Large doses of supplemental folate can bypass the folate trap, and megaloblastic anemia will not occur. However, the neurologic/psychiatric abnormalities associated with B-12 deficiency ensue progressively.

The biologically active form of folic acid is tetrahydrofolic acid (THFA), which is derived by the 2-step reduction of folate involving dihydrofolate reductase. THFA plays a key role in the transfer of 1-carbon units (such as methyl, methylene, and formyl groups) to the essential substrates involved in the synthesis of DNA, RNA, and proteins. More specifically, THFA is involved with the enzymatic reactions necessary to synthesis of purine, thymidine, and amino acid. Manifestations of folate deficiency thereafter, not surprisingly, would involve impairment of cell division, accumulation of possibly toxic metabolites such as homocysteine, and impairment of methylation reactions involved in the regulation of gene expression, thus increasing neoplastic risks.

A healthy individual has about 500-20,000 mcg of folate in body stores. Humans need to absorb approximately 50-100 mcg of folate per day in order to replenish the daily degradation and loss through urine and bile. Otherwise, signs and symptoms of deficiency can manifest after 4 months.

EPIDEMIOLOGY

Frequency

United States

The current standard of practice is that serum folate levels less than 3 ng/mL and a red blood cell (RBC) folate level less than 140 ng/mL puts an individual at high risk of folate deficiency. The RBC folate level generally indicates folate stored in the body, whereas the serum folate level tends to reflect acute changes in folate intake.

Data from the National Health and Nutrition Examination Survey (NHANES) 1999-2016 indicate the prevalence of low serum folate concentrations (< 6.8 nmol/L) decreased from 16% before folic acid fortification to 0.5% after folic acid fortification. 

The folate insufficiency prevalence (RBC folate <748 nmol/L; NTD risk) in women decreased from 2007–2010 (23.2%) to 2011–2016 (18.6%) overall. The prevalence of folate insufficiency (risk of NTDs) in women of reproductive age decreased from 59% prefortification (1988–1994) to 15% (1999–2006) and 23% (2007–2010) postfortification. 

In elderly persons, the prevalence of high serum folate concentrations (>45.3 not/L) increased from 7% before fortification to 38% after fortification. 

International

Countries that do not have a mandatory folic acid food fortification program have higher rates of folic acid deficiency. For example, a population based study in Iran (where there is no fortification) showed an age-adjusted prevalence of hyperhomocysteinemia (Hcy >15 micromol/L) of 73.1% in men and 41.07% in women (aged 25-64 y).

Casey et al examined the effects over 1 year of a free weekly iron-folic acid supplementation and deworming program in 52,000 Vietnamese women of childbearing age. The investigators collected demographic data and blood and stool samples at baseline and at 3 and 12 months following the implementation of the program.

Findings included a mean Hb increase of 9.6 g/L (P< 0.001) and a reduction in the presence of anemia from 37.5% of the women at baseline to 19.3% at 12 months. Iron deficiency was also reduced, from 22.8% at baseline to 9.3% by 12 months, as well as hookworm infection (76.2% at baseline to 23.0%) in the same period.

A discussion of selected national Australian policies is presented in Lawrence et al.[5]

Mortality/Morbidity

Hematologic Manifestations

Folate deficiency can cause anemia. The presentation typically consists of macrocytosis and hypersegmented polymorphonuclear leucocytes (PMNs). More detailed laboratory findings are discussed in the Workup section.

The anemia usually progresses over several months, and the patient typically does not express symptoms as such until the hematocrit level reaches less than 20%. At that point, symptoms such as weakness, fatigue, difficulty concentrating, irritability, headache, palpitations, and shortness of breath can occur. Furthermore, heart failure can develop in light of high-output cardiac compensation for the decreased tissue oxygenation. Angina pectoris may occur in predisposed individuals due to increased cardiac work demand. Tachycardia, postural hypotension, and lactic acidosis are other common findings. Less commonly, neutropenia and thrombocytopenia also will occur, although it usually will not be as severe as the anemia. In rare cases, the absolute neutrophil count can drop below 1000/mL and the platelet count below 50,000/mL.

Elevated Serum Homocysteine and Atherosclerosis

Folate in the 5-methyl THFA form is a cosubstrate required by methionine synthase when it converts homocysteine to methionine. As a result, in the scenario of folate deficiency, homocysteine accumulates. Several recent clinical studies have indicated that mild-to-moderate hyperhomocystinemia is highly associated with atherosclerotic vascular disease such as coronary artery disease (CAD) and stroke. In this case, mild hyperhomocystinemia is defined as total plasma concentration of 15-25 mmol/L and moderate hyperhomocystinemia is defined as 26-50 mmol/L.

Genest et al found that a group of 170 men with premature coronary artery disease had a significantly higher average level of homocysteine (13.7 ± 6.4). In another study, Coull et al found that among 99 patients with stroke or transient ischemic attacks (TIAs), about one third had elevated homocysteine. 

Elevated homocysteine levels might act as an atherogenic factor by converting a stable plaque into an unstable, potentially occlusive, lesion. Wang et al found that in patients with acute coronary syndromes, levels of homocysteine and monocyte chemoattractant protein-1 (MCP-1) were significantly higher. MCP-1 is a chemokine characterized by the ability to induce migration and activation of monocytes and therefore may contribute to the pathogenesis of CAD. Homocysteine is believed to have atherogenic and prothrombotic properties via multiple mechanisms.

Bokhari et al found that among patients with CAD, the homocysteine level correlates independently with left ventricular systolic function. The mechanism is unknown, but it may be due to a direct toxic effect of homocysteine on myocardial function separate from its effect on coronary atherosclerosis.

Although in multiple observational studies elevated plasma homocysteine levels have been positively associated with increased risk of atherosclerosis, randomized trials have not been able to demonstrate the utility of homocysteine-lowering therapy. In the Heart Outcomes Prevention Evaluation (HOPE) 2 trial, supplements combining folic acid and vitamins B6 and B12 did not reduce the risk of major cardiovascular events in patients with vascular disease. Similarly, in the trial of Bonaa et al treatment with B vitamins did not lower the risk of recurrent cardiovascular disease after acute myocardial infarction.

Pregnancy Complications

Possible pregnancy complications secondary to maternal folate status may include spontaneous abortion, abruption placentae, and congenital malformations (eg, neural tube defect). In a literature review, Ray et al examined 8 studies that demonstrated association between hyperhomocystinemia and placental abruption/infarction. Folate deficiency also was a risk factor for placental abruption/infarction, although less statistically significant.

Several observational and controlled trials have shown that neural tube defects can be reduced by 80% or more when folic acid supplementation is started before conception. In countries like the United States and Canada, the policy of widespread fortification of flour with folic acid has proved effective in reducing the number of neural tube defects.

Although the exact mechanism is not understood, a relative folate shortage may exacerbate an underlying genetic predisposition to neural tube defects.

Effects on Carcinogens

Diminished folate status is associated with enhanced carcinogenesis. A number of epidemiologic and case-control studies have shown that folic acid intake is inversely related to colon cancer risk. With regard to the underlying mechanism, Blount et al showed that folate deficiency can cause a massive incorporation of uracil into human DNA leading to chromosome breaks. Another study by Kim et al suggested that folate deficiency induces DNA strand breaks and hypomethylation within the p53 gene.

Effects on Cognitive Function

Several studies have shown that an elevated homocysteine level correlates with cognitive decline. In Herbert's classic study in which a human subject (himself) was in induced folate deficiency from diet restriction, he noted that CNS effects, including irritability, forgetfulness, and progressive sleeplessness, appeared within 4-5 months. Interestingly, all CNS symptoms were reported to disappear within 48 hours after oral folate intake.

Low folate and high homocysteine levels are a risk factor for cognitive decline in high-functioning older adults and high homocysteine level is an independent predictor of cognitive impairment among long-term stay geriatric patients.

Mechanistically speaking, current theory proposes that folate is essential for synthesis of S-adenosylmethionine, which is involved in numerous methylation reactions. This methylation process is central to the biochemical basis of proper neuropsychiatric functioning.

Despite the association of high homocysteine level and poor cognitive function, homocysteine-lowering therapy using supplementation with vitamins B-12 and B-6 was not associated with improved cognitive performance after two years in a double-blind, randomized trial in healthy older adults with elevated homocysteine levels.

Sex

Women who are pregnant are at higher risk of developing folate deficiency because of increased requirements.

Age

Elderly people also may be more susceptible to folate deficiency in light of their predisposition to mental status changes, social isolation, low intake of leafy vegetables and fruits, malnutrition, and comorbid medical conditions. The greatest risk appears to be among low-income populations and institutionalized elderly people and less risk among the free-living elderly population.

Tuesday, 7 November 2023

Choosing Careers: Making the Right decision

Whether you are looking to enter the work force for the first time or contemplating a career change, the first step towards choosing a fulfilling career is to uncover the activities that get you excited and bring you joy.






Most of us have fallen into the trap of thinking that the sole point of work is to ‘bring home enough money to live comfortably’. That’s what we have been brought up with -become a high achiever to get the best in life. While adequate monetary compensation is important in any job, it’s not all that counts. If you are dis-satisfied with what you do every day, then going to the same workplace each day can take a toll on your physical and mental health. You may feel burned out and frustrated, anxious, depressed, or unable to enjoy time at home with friends and family, knowing another boring workday is ahead. What’s more, if you don’t find your work meaningful and rewarding, it’s hard to keep the momentum going to advance in your career. You are more likely to be successful in a career that you feel passionate about. So chosing the right career is important to you, as are all the decisions in your life and this is something you need to work out on your own.


The lack of career counseling and proper planning shows up in the form of a horde of college graduates flooding the streets each year, with no work place to go to. Majority amongst them are disillusioned youths who believe that because they have an MBA degree in their hands, the world should grovel at their feet. There are others who have good practical, research, teaching and creative skills, but these do not show up in their academic records. Others lie wedged between the two conflicting parties- the famous ‘sandwiches’ who have their hearts in one profession and their legs in another and somehow can’t bring the two worlds to meet. If you are assertive enough you may chalk out a career path for yourself and choose your own domain. But the choice once made is irrevocable and we fear in our marrow that we may have to live with the consequences of our choice forever. We could always find fault in the model our parents presented before us. Now we realize how hard it is to stand in their shoes. Most people succumb to family pressure in the choice of a profession largely because of this fear. They can always blame them if things don’t work out.Sometimes the momentum of one big burst of inspiration can carry you through life. But often we chase ideals, sacrifice so much in the pursuit of our dreams, and then realize that it is not worth it all. Worst still, we may start suffering from self-doubt. The eternally baffling question is “Are you really well-equipped to handle it?” Fears are a part of everyone’s life. Simply closing your eyes won’t work. Stand up and face the world.
Whether you’re just out of college, or finding that opportunities are limited in your current position of work or,  facing unemployment, you need to review your career path. The right career is out there for everyone. By learning how to research options wisely, realize your strengths, and acquire new skills, as well as muster the courage to make a change, you can discover the career that’s right for you.

Haematology Nerds: .... Walking the haem path.


Understanding the people in haem labs. Thats what its all about

If the sight of blood makes you squeamish, this probably isn’t the career for you. Haematology is all about blood, but not in a creepy horror movie kind of way. Haematologists aren’t vampires (at least we don’t think so)🧛; I rather they are highly skilled specialists in their field.


Haematologists usually work in specialist departments of hospitals carrying out tests on blood samples🩸 and analyzing results to find solutions to your health-related problems. It’s a bit like detective work🔬; they look at the shape, size, function and number of blood cells to help diagnose illnesses. 🧪

Haematologists aren’t just involved in the diagnostic process; they are also involved in the treatment and care of patients with diseases of the blood cells and bone marrow. That means that they aren’t just confined to the laboratory, but also treat certain patients one-on-one and work with doctors 👨‍⚕️and nurses. 👩‍⚕️That's what makes Haematology so challenging and alluring. I'd have hated being pinned down in some lab behind a microscope🔬, dishing out remarks on smear slides, if it hadn't been for the clinical part of it all. Thats what makes haematology come alive and makes me feel like the doctor I am, rather than some medical technicians.
Gosh these people can brag about being 'almost doctors' just because they have some basic knowledge about a few medical tests!! All the sweat and blood, all the years of mind wrecking course work down the drain😩.
As if all those years of med school were some fake drama.🎭
Well, everybody has a right to their opinion, and their health preferences are their personal issues. All we can do is just suggest whats best for them and leave the rest to The Lord, who is the real HEALER! We are just pawns in His hands.... facilitators in his shower of mercy algorithm.